This article was downloaded by: [University of Haifa Library]

On: 17 August 2012, At: 19:34 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Electrical and Nonlinear Optical Properties of Langmuir-Blodgett Films of Charge Transfer Complexes

T. Nakamura ^{a b} , T. Yumoto ^b , T. Suzuki ^b , T. Akutagawa ^{a b} , T. Hasegawa ^{a b} , H. Tachibana ^c , M. Matsumoto ^c , S. Horiuchi ^d , H. Ikegami ^d , H. Yamochi ^d & G. Saito ^d

Version of record first published: 24 Sep 2006

To cite this article: T. Nakamura, T. Yumoto, T. Suzuki, T. Akutagawa, T. Hasegawa, H. Tachibana, M. Matsumoto, S. Horiuchi, H. Ikegami, H. Yamochi & G. Saito (1999): Electrical and Nonlinear Optical Properties of Langmuir-Blodgett Films of Charge Transfer Complexes, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 327:1, 83-86

^a Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, JAPAN

^b Guraduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, JAPAN

^c National Institute of Materials and Chemical Research, Tsukuba, 305-8565, JAPAN

^d Department of Chemistry, Kyoto University, Kyoto, 606-8502, JAPAN

To link to this article: http://dx.doi.org/10.1080/10587259908026785

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Electrical and Nonlinear Optical Properties of Langmuir-Blodgett Films of Charge Transfer Complexes

T. NAKAMURA^{a,b}, T. YUMOTO^b, T. SUZUKI^b, T. AKUTAGAWA^{a,b}, T. HASEGAWA^{a,b}, H. TACHIBANA^c, M. MATSUMOTO^c, S. HORIUCHI^d, H. IKEGAMI^d, H. YAMOCHI^d and G. SAITO^d

^aResearch Institute for Electronic Science, Hokkaido University, Sapporo 060–0812, JAPAN, ^bGuraduate School of Environmental Earth Science, Hokkaido University, Sapporo 060–0810, JAPAN, ^cNational Institute of Materials and Chemical Research, Tsukuba 305–8565, JAPAN; and ^dDepartment of Chemistry, Kyoto University, Kyoto 606–8502, JAPAN

(Received June 30, 1998; In final form July 15, 1998)

A series of donors and acceptors are synthesized and, by combing these molecules, Langmuir-Blodgett (LB) films of the charge transfer (CT) complexes are prepared. Ionic CT complexes with partial CT state exhibit high conductivity in the form of LB films. The second nonlinear optical properties of the films are examined using electro-apsorption method.

Keywords: Langmuir-Blodgett technique; electrical conductivity; second nonlinear optical property; electro-apsorption spectroscopy

INTRODUCTION

The charge transfer interaction between donor (D) and acceptor (A) molecules is described by the resonance between the neutral (D•A) and ionic (D*•A') state of the D-A pair¹¹¹,

$$\psi \cong a\varphi(D \bullet A) + b\varphi(D^{+} \bullet A^{-}) \tag{1}$$

In ordinary molecular pairs, the coefficient b in ground state is relatively small and the contribution from charge-transferred structure is negligible, accordingly. However, when the ionization potential (Ip) of a D molecule is small and the electron affinity (EA) of an A molecule is large, the D*•A structure become predominant even in the ground state. The charge transfer (CT) complexes thus obtained have potentials for the application of the future electronic and

photonic devices^[2]. In this paper, we will describe the Langmuir-Blodgett (LB) films of CT complexes, the degree of CT (δ) of which are controlled. The films show intriguing electrical and nonlinear optical properties.

RESULTS AND DISCUSSION

Degree of Charge Transfer

The difference between the Ip of D and the EA of A molecule is one of the main factors for determining δ from D to A molecule. The difference can be estimated conveniently from the difference between the first half wave oxidation $(E^{1}_{1/2}(D))$ and the reduction $(E^{1}_{1/2}(A))$ potentials, $\Delta E = E^{1}_{1/2}(D) - E^{1}_{1/2}(A))^{[1]}$. The ionic partial charge transferred state, which is one of the necessary condition for high electrical conductivity of the CT-complex solids, is usually achieved when -0.02 $\leq \Delta E \leq 0.34 \text{ V}$

We have synthesized several D and A molecules with different $E^1_{1/2}(D)$ or $(E^1_{1/2}(A))$ (Scheme 1). By combing these molecules, we could obtain a variety of CT complexes which are summarized in Table 1 together with the composition, the CN or CO stretching-band position of A molecule and the charge on each molecule determined from IR and UV-vis spectra.

SCHEME 1. Molecules used in this study

	Composition	$v_{CN}(v_{CO})$ / cm ⁻¹	Charge on D	Charge on A
a	(BEDOTTF) _{0.4} (C _{1.0} TCNQ)	2179	+0.4	-1
b	(BEDOTTF) _{0.5} (CF ₃ TCNQ)	2188	+0.5	-1
c	$(OMTTF)(C_{10}TCNQ)$	2214	+0.2	-0.2
d	(OMTTF) (C ₁₄ TCNQ)	2214	+0.2	-0.2
e	$(OMTTF)(C_{18}TCNQ)$	2214	+0.2	-0.2
f	$C_{16}C_{17}DMTTF - C_{18}TCNQ$	2179	+1	-1
g	$C_{16}C_{17}DMTTF - C_{18}Q$	1700	~0	~0
h	$(C_{18}HQ)(C_{18}Q)$	1657	+ 0.2	- 0.2

TABLE 1. CT complexes forming LB films

Electrical Properties

The LB films were prepared using the horizontal lifting method. We have already reported the high conductivity in LB films of $\mathbf{a}^{[4]}$. The LB film of \mathbf{b} is also promising due to the ionic partial CT state of BEDO-TTF. We have found that the LB films of \mathbf{b} mixed 2:1 with arachidic acid exhibit a conductivity of 3.7 S/cm at room temperature^[5]. On the other hand, the complexes $\mathbf{c} - \mathbf{e}$ are in the neutral CT states. The LB films should consist of mixed stacks of D and A molecules and the conductivity of these films is expected to be low, accordingly^[6]. The fully CT state in the LB films of \mathbf{f} leads to an insulating behaviour due to the large electron correlation (on-site Coulomb repulsion energy is larger than band-width)^[7].

Nonlinear Optical Properties

Since we fabricated the LB films by the horizontal lifting method, the films have a non-centrosymmetric structure and hence have a second nonlinear optical activity. The second order molecular hyperpolarizability is related to the δ as,

$$\beta^{(2)} \propto \Delta \mu_{rr} f_{rr} \propto e^{3} d^{3} \delta (1 - \delta) |2\delta - 1|$$
 (2)

where d is the average distance between D and A, $\Delta\mu_{ge}$ is the difference of the permanent dipole moment of the grand and excited state, and f_{ge} is the transition oscillator strength^[8].

We evaluated the second nonlinear susceptibility $\chi^{(2)}(-\omega;\omega,0)$ by electroapsorption spectroscopy. The modulation signal $\Delta\alpha$ is converted to the nonlinear susceptibility as,

$$I_{m}\chi^{(2)}(-\omega;\omega,0) = \frac{\lambda}{2\pi} \frac{1}{E} (n\Delta\alpha/l)$$
 (3)

where l is the film thickness. The second nonlinear susceptibility was 0.5 and 0.7 pmV⁻¹ for the LB films of **a** and **c**, respectively. Quantitative analysis of the relationship between δ and χ ⁽²⁾ is now in progress.

Acknowledgments

This work was partly supported by a Grant-in-Aid for Science Research from Ministry of Education, Science, Sports, and Culture of Japan.

References

- R. S. Mulliken and W. B. Person, "Molecular Complexes", John Wiley & Sons, New York (1969).
- [2] T. Nakamura, Handbook of Organic Conductive Molecules and Polymers. ed. by H. S. Nalwa, John Wiley & Sons, Chichester (1997) p. 727.
- [3] G. Saito and J. P. Ferraris, Bull. Chem. Soc. Jpn., 53, 2141 (1980).
- [4] T. Nakamura, G. Yunome, R. Azumi, M. Tanaka, H. Tachibana, M. Matsumoto, S. Horiuchi, H. Yamochi and G. Saito, J. Phys. Chem., 98, 1882 (1994); T. Nakamura, G. Yunome, M. Matsumoto, Y. F. Miura, S. Horiuchi, H. Yamochi, G. Saito, H. Isotalo and H. Stubb, Synthetic Metals, 71, 1993 (1995).
- [5] T. Yumoto et al., submitted.
- [6] T. Nakamura, T. Konuma, T. Akutagawa, H. Tachibana, R. Azumi, M. Matsumoto, H. Isotalo, S. Horiuchi, H. Yamochi and G. Saito, Synthetic Metals, 86, 1843 (1997).
- [7] T. Nakamura, T. Konuma and T. Akutagawa, Synthetic Metals, 86, 1903 (1997).
- [8] T. Konuma et al., Thin Solid Films, in press.